Nodeless superconductivity in the topological nodal-line semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CaSb</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>
نویسندگان
چکیده
${\mathrm{CaSb}}_{2}$ is a topological nodal-line semimetal that becomes superconducting below 1.6 K, providing an ideal platform to investigate the interplay between topologically nontrivial electronic bands and superconductivity. In this work, we investigated order parameter of by measuring its magnetic penetration depth change $\mathrm{\ensuremath{\Delta}}\ensuremath{\lambda}(T)$ down 0.07 using tunnel diode oscillator based technique. Well inside state, shows exponential activated behavior, provides direct evidence for nodeless gap. By analyzing temperature dependence depth, superfluid density specific heat, find both can be consistently described two-gap $s$-wave model, in line with presence multiple Fermi surfaces associated distinct Sb sites compound. These results demonstrate fully gapped superconductivity constrain allowed pairing symmetry.
منابع مشابه
Superconductivity in Weyl semimetal candidate MoTe2.
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovere...
متن کاملAntiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi
We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies correspon...
متن کاملTopological nodal-line fermions in spin-orbit metal PbTaSe2
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, base...
متن کاملTopological semimetal in honeycomb lattice LnSI.
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lat...
متن کاملWeyl semimetal in a topological insulator multilayer.
We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a multilayer structure, composed of identical thin films of a magnetically doped 3D topological insulator, separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2022
ISSN: ['1098-0121', '1550-235X', '1538-4489']
DOI: https://doi.org/10.1103/physrevb.106.214521